Abstract

Morphogenesis of epithelial cells involves processes by which kidney shape and function are regulated. The lack of in vitro models that are sustainable for longer time periods and emulating complex intercellular interactions of the kidney have limited understanding about epithelial tissue morphogenesis and its aberrations in diseases such as autosomal dominant polycystic kidney disease (ADPKD). A sustainable three-dimensional (3D) coculture system for normal and diseased kidney tissues is reported here. Tubule- and ADPKD cyst-derived cells were cultured in extracellular matrix molecules infused into 3D porous silk scaffolds, and these cultures were subsequently extended into a perfusion bioreactor. The results indicated collagen-matrigel-mediated morphogenesis for both (normal and disease) cell types and also supported coculturing with fibroblasts. The structural and functional features of the kidney-like tissue structures were validated based on the distribution of E-cadherin, N-cadherin, Na+ K+ ATPase pump, and cellular uptake of the organic anion (6-carboxy fluorescein). Further, the structures were sustained for longer time periods using a perfusion bioreactor to demonstrate the potential utility of this 3D in vitro coculture system for ADPKD research, other epithelial tissue systems, and for in vitro drug screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.