Abstract

We prepared highly dense, highly oriented hybrid muscular tissues that are composed of C2C12 cells (skeletal muscle myoblast cell line) and type I collagen. A cold mixture of C2C12 cells suspended in DMEM and type I collagen solution was poured into capillary tube molds of two different sizes (inner diameters; 0.90 and 0.53 mm, respectively). One end of each mold was sealed. Upon centrifugation (1000 rpm, 5 min) and subsequent thermal gelation, a rod-shaped gel was obtained. It was cultured in an agarose gel-coated dish for 7 days (first for 3 days in a growth medium and then for 4 days in a differentiation medium), during which time it shrank to become a highly dense tissue. Small-diameter rod-shaped, highly dense cellular assemblages with multinucleated myotubes were formed and only few necrotic cells at the core of the tissue were observed. On the other hand, a ring-shaped tissue prepared using a specially devised agarose gel mold was subjected to cyclic stretching at 60 rpm, resulting in the formation of a highly dense, highly oriented hybrid muscular tissue in which both densely accumulated cells and collagen fiber bundles tended to be aligned in the direction of stretching. The hybrid muscular tissues that were prepared using via sequential procedures of a centrifugal cell packing method and a mechanical stress-loading method became closer to native muscular tissues in terms of cell density and orientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.