Abstract

A tissue-engineered mesh fabricated with adipose-derived mesenchymal stem cells (AD-MSCs) cultured on a silk fibroin scaffold is evaluated for use in female pelvic reconstruction. Thirty-five female Sprague Dawley rats were divided into four groups. Group A (n = 10) were implanted with polypropylene meshes, Group B (n = 10) with silk fibroin scaffolds and Group C (n = 10) with tissue-engineered meshes. Group D (n = 5) acted as the tissue control. The tissue-engineered mesh was produced as follows. AD-MSCs were obtained from adipose tissue of rats designated to Group C. The cells were seeded onto a silk fibroin scaffold, cultured and then observed by scanning electron microscopy (SEM). Histological studies of these meshes were performed at 4 and 12 weeks after implantation and mechanical testing was carried out on all groups before implantation and at 12 weeks after implantation. AD-MSCs displayed fibroblast-like shapes and were able to differentiate into adipocytes or fibroblasts. SEM observation showed that AD-MSCs proliferated and secreted a matrix onto the silk fibroin scaffolds. After implantation of the scaffolds into rats, histological analysis revealed better organized newly formed tissue in Group C than in controls. Group C also had a similar failure force (2.67 ± 0.15 vs 2.33 ± 0.38 N) and a higher Young's modulus (2.99 ± 0.19 vs 1.68 ± 0.20 MPa) than a normal vaginal wall, indicating the potential of this tissue-engineered approach. AD-MSCs were validated as seed cells for tissue engineering. The silk fibroin scaffold thus shows promise for application with AD-MSCs in the fabrication of tissue-engineered mesh with good biocompatibility and appropriate mechanical properties for pelvic floor reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.