Abstract

Strategies to accelerate the rate of axon regeneration would improve functional recovery following peripheral nerve injury, in particular for cases involving segmental nerve defects. We are advancing tissue engineered nerve grafts (TENGs) comprised of long, aligned, centimeter-scale axon tracts developed by the controlled process of axon “stretch-growth” in custom mechanobioreactors. The current study used a rat sciatic nerve model to investigate the mechanisms of axon regeneration across nerve gaps bridged by TENGs as well as the extent of functional recovery compared to nerve guidance tubes (NGT) or autografts. We established that host axon growth occurred directly along TENG axons, which mimicked the action of “pioneer” axons during development by providing directed cues for accelerated outgrowth. Indeed, axon regeneration rates across TENGs were 3–4 fold faster than NGTs and equivalent to autografts. The infiltration of host Schwann cells – traditional drivers of peripheral axon regeneration – was also accelerated and progressed directly along TENG axons. Moreover, TENG repairs resulted in functional recovery levels equivalent to autografts, with both several-fold superior to NGTs. These findings demonstrate that engineered axon tracts serve as “living scaffolds” to guide host axon outgrowth by a new mechanism – which we term “axon-facilitated axon regeneration” – that leads to enhanced functional recovery.

Highlights

  • Peripheral nerve injuries (PNIs) present a serious medical concern, with over 550,000 neurosurgical procedures in the United States and Europe annually (Robinson, 2000; Evans, 2001; Siemionow and Brzezicki, 2009; Brattain, 2012)

  • dorsal root ganglia (DRG) explants were isolated from embryonic rats, plated on a stationary membrane and a movable overlapping “towing” membrane, and virally transduced to express green fluorescent protein (GFP) or mCherry to permit subsequent in vivo identification

  • We assessed the degree of functional recovery and mature axonal regeneration at 16 weeks following repair of 1 cm nerve lesions using nerve guidance tubes (NGT), reverse autografts, or tissue engineered nerve grafts (TENGs)

Read more

Summary

Introduction

Peripheral nerve injuries (PNIs) present a serious medical concern, with over 550,000 neurosurgical procedures in the United States and Europe annually (Robinson, 2000; Evans, 2001; Siemionow and Brzezicki, 2009; Brattain, 2012). For long distance axon regeneration, such as down a nerve in the arm, there is a race against time as the slow growth of regenerating axons (approximately 1 mm/day) is outpaced by the gradual disappearance of the physical and chemical guidance cues necessary to guide that regeneration (Lee and Wolfe, 2000; Hall, 2001; Belkas et al, 2004). This commonly results in poor recovery of motor function distal to the original nerve injury (Evans, 2000; Meek and Coert, 2002)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call