Abstract

Ghrelin plays important roles, such as regulating growth hormone release and energy metabolism, but little is known about its developmental changes in the proventriculi of chicken embryos. This study was designed to elucidate the distributions and developmental changes of ghrelin and ghrelin-O-acyltransferase (GOAT) expression in broiler embryos using qRT-PCR and immunohistochemistry. Our results demonstrated the following: (1) on E18, ghrelin and GOAT are ubiquitously expressed in every tissue examined. The expression level of ghrelin mRNA was the highest in the proventriculus, reaching a level that was 50-fold higher than that in the hypothalamus, while GOAT mRNA expression was low in the proventriculus and it was only 67.6% as high as that of hypothalamus; (2) ghrelin and GOAT mRNA expression were detected in the proventriculus on E9, but only at 1.9% and 1.7% of the level expressed on E18, respectively, and their expression levels increased rapidly from E18 to E21. There was similar developmental pattern in the ghrelin and GOAT mRNA expression; and (3) ghrelin-immunopositive cells were first detected in the proventriculus on E15, were located only in the compound tubular glands of the proventriculus, and were of the closed-cell type. The density of ghrelin-immunopositive cells increased significantly from E15 to E21. These results suggest that ghrelin may be an important regulating factor that plays a vital role during the development of chicken embryos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.