Abstract

ABSTRACTSodium hypochlorite (NaOCl) remains the most used irrigation solution during root canal preparation because of characteristics such as wide-spectrum antimicrobial activity and organic tissue dissolution capacity. However, these solutions can alter dentin composition and there is no consensus on the optimal concentration of NaOCl to be used. Objectives To determine the organic matter dissolution and changes in dentin chemical composition promoted by different concentrations of NaOCl over time. Material and Methods: Fragments of bovine muscle tissue were weighed before and after 5, 10, and 15 min of immersion in the groups (n=10): G1- 0.9% saline solution; G2- 1% NaOCl; G3- 2.5% NaOCl; and G4- 5% NaOCl. Bovine dentin fragments were subjected to the same irrigants and absorption spectra were collected by Attenuated Total Reflectance of Fourier Transform Infrared Spectroscopy (ATR-FTIR) before and after 0,5, 1, 2, 3, 5, 8, and 10 min of immersion in the solutions. The ratios of the amide III/phosphate and carbonate/phosphate absorption bands were determined. The tissue dissolution and carbonate/phosphate ratios were submitted to the two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test (α<0.05) and to the one-way analysis of variance with Tukey’s (α<0.05). The amide III/phosphate ratio was analyzed by Friedman test (α<0.05) and the Kruskal-Wallis test with Dunn’s post-hoc (α<0.05).Results The increase in NaOCl concentration and contact time intensified the dissolution of organic matter and dentin collagen with reduction in the amide III/phosphate ratio. Significant differences between all groups (p<0.05) were observed in the dissolution of organic matter at 10 min and in the amide III/phosphate ratio between the saline solution and 5% NaOCl at 5 min. The carbonate/phosphate ratio decreased significantly in G2, G3, and G4 after 0,5 min of immersion (p<0.05), but more alterations did not occur in the subsequent periods (p>0.05). Intergroup differences were not observed in this ratio (p>0.05).Conclusions The increase in the exposure time and in the concentration of NaOCl solution lead to an increase in the tissue dissolution and dentin collagen deproteination. Furthermore, some carbonate ions are removed from the dentin inorganic phase by the NaOCl.

Highlights

  • The physical and chemical effects of the irrigation solutions used in endodontics are crucial for cleaning and disinfection, since studies have shown that a large number of root dentin walls remain untouched after biomechanical preparation25

  • Tissue dissolution was directly dependent on the concentration of NaOCl solutions as well as the immersion time

  • The results demonstrated that NaOCl can dissolve the organic matter and deproteinate the collagen of dentin in high quantities; and otherwise, it can cause a small reduction in the carbonate component of the inorganic phase of the dentin

Read more

Summary

Introduction

The physical and chemical effects of the irrigation solutions used in endodontics are crucial for cleaning and disinfection, since studies have shown that a large number of root dentin walls remain untouched after biomechanical preparation. There is no consensus regarding the ideal concentration of NaOCl to be used. An increase in the number of microorganisms was observed when intracanal medicament was not used between the treatment sessions and this fact was assigned to the organic tissue that remained in the root canal and provided ideal conditions for bacterial growth. Possible ways to improve the tissue dissolution by NaOCl are the increase in the pH7, the concentration and temperature of the solutions, ultrasonic agitation, and prolonged working time. The increase in concentration of NaOCl solutions can lead to undesirable effects such as an increase in toxicity to the periapical tissues

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call