Abstract

The inability of cartilage tissue to self-heal due to its avascular nature often leads to conditions such as osteoarthritis, traumatic rupture of cartilage, and osteochondrosis. The cartilage provides cushioning effects between the joints and avoids bone frictions. The extracellular matrix (ECM) of cartilage consists predominantly of collagens, elastin, proteoglycans and glycoproteins. A number of tissue engineered ECM derived biological scaffolds and matrices are available for cartilage regeneration. The decellularized tissues provide appropriate bioactive cues in the absence of cellular components, hence avoiding immunological issue. However, the decellularization process involves several cellular disruption techniques that may alter the ECM architecture affecting bioactivity. Therefore, development of cell-free cartilage biomaterials with unaltered ECM integrity and bioactivity is of paramount necessity by smart selection of modified techniques and agents. Herein, we described about various decellularization methods, agents, techniques, and their applications in tissue/cartilage decellularization. It also contemplates various difficulties and future perspectives to troubleshoot the existing obstructions in tissue-derived cartilage matrices and their applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call