Abstract
Primary cilia are highly conserved multifunctional cell organelles that extend from the cell membrane. A range of genetic disorders, collectively termed ciliopathies, is attributed to primary cilia dysfunction. The archetypical ciliopathy is the Bardet-Biedl syndrome (BBS), patients of which display virtually all symptoms associated with dysfunctional cilia. The primary cilium acts as a sensory organelle transmitting intra- and extracellular signals thereby transducing various signalling pathways facilitated by the BBS proteins. Growing evidence suggests that cilia proteins also have alternative functions in ciliary independent mechanisms, which might be contributing to disease etiology. In an attempt to gain more insight into possible differences in organ specific roles, we examined whether relative gene expression for individual Bbs genes was constant across different tissues in mouse, in order to distinguish possible differences in organ specific roles. All tested tissues show differentially expressedBbstranscripts with some tissues showing a more similar stoichiometric composition of transcripts than others do. However, loss ofBbs6orBbs8affects expression of otherBbstranscripts in a tissue-dependent way. Our data support the hypothesis that in some organs, BBS proteins not only function in a complex but might also have alternative functions in a ciliary independent context. This significantly alters our understanding of disease pathogenesis and development of possible treatment strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.