Abstract
Optimal gene electrotransfer (GET) requires a compromise between maximum transgene expression and minimal tissue damage. GET in skeletal muscle can be improved by pretreatment with hyaluronidase which contributes to maximize transgene uptake and expression. Nevertheless, tissue damage remains severe close to the electrodes, with a concomitant loss of GET efficiency. Here we analyze the role of pH in tissue damage in GET protocols through in vivo modeling using a transparent chamber implanted into the dorsal skinfold of a mouse (DSC) and intravital microscopy, and in silico modeling using the Poisson–Nernst–Planck equations for ion transport. DSC intravital microscopy reveals the existence of pH fronts emerging from both electrodes and that these fronts are immediate and substantial thus giving rise to tissue necrosis. Theoretical modeling confirms experimental measurements and shows that in GET protocols whether with or without hyaluronidase pretreatment, pH fronts are the principal cause of muscle damage near the electrodes. It also predicts that an optimal efficiency in GET protocols, that is a compromise between obtaining maximum electroporated area and minimal tissue damage, is achieved when the electric field applied is near 183V/cm in a GET protocol and 158V/cm in a hyaluronidase+GET protocol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Bioelectrochemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.