Abstract

Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. In this study, we used matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR–MS) to perform lipidomic profiling of 5 MF tissue samples and 44 serum samples (22 from MF patients and 22 from control subjects). Multivariate statistical analysis of the mass spectral data showed that MF tissues had altered levels of seven lipids and MF sera had altered levels of twelve. Among these, six phosphotidylcholines, PC (34:2), PC (34:1), PC (36:3), PC (36:2), PC (32:0), and PC (38:4) and one sphingomyelin, SM (16:0) were altered in both MF tissues and sera. PC (34:2), PC (34:1), PC (36:3), and PC (36:2) levels were increased in both tissues and sera from MF patients, whereas SM (16:0), PC (32:0), and PC (38:4) levels were increased in MF sera but were decreased in MF tissues. We have thus identified multiple lipids that are altered in MF tissues and sera. This suggests serological and tissue lipidomic profiling could be an effective approach to screening for diagnostic biomarkers of MF.

Highlights

  • Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma (CTCL) [1]

  • PC (34:2), PC (34:1), PC (36:3), and PC (36:2) levels were increased in both tissues and sera from MF patients, whereas SM (16:0), PC (32:0), and PC (38:4) levels were increased in MF sera but were decreased in MF tissues

  • We used mass spectrometry imaging (MSI) in the positive ion mode to analyze the intensities of various phosphatidylcholines (PCs) and sphingomyelins (SMs) in the cancer and adjacent non-cancer areas in MF patient tissue sections

Read more

Summary

Introduction

Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma (CTCL) [1]. It is often misdiagnosed as inflammatory skin disease because of scaly erythematous patches and plaques that are presented for years. The advanced form of MF is presented as generalized tumors involving the lymph nodes and inner viscera [2]. There is no effective treatment for advanced stage MF and the median survival time is less than 1.5 years. New MF diagnostic biomarkers are necessary for early detection and clinical intervention to improve outcomes [3]. Aberrant expression and function of the many transcriptional factors and regulators of signal transduction has been reported in CTCL [4]. The oncogenes activate downstream targets that are either directly or indirectly connected to the metabolism [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call