Abstract

Many ecological and evolutionary processes in animals depend upon microbial symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We compared the microbiome between populations, individuals, and tissue types of a range-expanding spider, using 16S rRNA gene sequencing. Our study is one of the first to go beyond targeting known endosymbionts in spiders and characterizes the total microbiome across different body compartments (leg, prosoma, hemolymph, book lungs, ovaries, silk glands, midgut, and fecal pellets). Overall, the microbiome differed significantly between populations and individuals, but not between tissue types. The microbiome of the wasp spider Argiope bruennichi features a novel dominant bacterial symbiont, which is abundant in every tissue type in spiders from geographically distinct populations and that is also present in offspring. The novel symbiont is affiliated with the Tenericutes, but has low sequence identity (<85%) to all previously named taxa, suggesting that the novel symbiont represents a new bacterial clade. Its presence in offspring implies that it is vertically transmitted. Our results shed light on the processes that shape microbiome differentiation in this species and raise several questions about the implications of the novel dominant bacterial symbiont on the biology and evolution of its host.

Highlights

  • All multicellular life evolved from and with microbes

  • Illumina amplicon sequencing of the V4 region of the 16S SSU rRNA gene of 6 adult spiders (8 tissue types each) and two spiderling samples from 2 locations resulted in 5.2 million reads with an arithmetic mean of 90,377 reads per sample

  • We demonstrated that A. bruennichi spiders contain a multi-species microbiome, answering the first of our research questions

Read more

Summary

Introduction

All multicellular life evolved from and with microbes. The interactions between animals and microbes are not rare occurrences, but rather fundamentally important aspects of animal biology from development to systems ecology [1]. The holobiont, defined as a host and all of its symbionts, is considered as a unit of biological organization, upon which selection can act [2,3,4,5]. Correlations have been found between the microbiome and a number of traits across different levels of biological organization and states (from population-level [15] down to the level of tissue-specific microbiomes [14,16] as well as across different age and disease states [17])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call