Abstract

Developing effective therapy to inhibit postoperative recurrence and metastasis of colorectal cancer (CRC) is challenging and significant to reduce mortality and morbidity. Here, a granular hydrogel, assembled from gelatin microgels by dialdehyde starch and interpenetrated with in situ polymerized poly(sulfobetaine methacrylate-co-N-isopropylacrylamide) (P(SBMA-co-NIPAM)), is prepared to load and lock Food and Drug Administration (FDA)-approved indocyanine green (ICG) with definite photothermal function and biosafety for photothermal therapy (PTT) combining with checkpoint inhibitor. The presence of P(SBMA-co-NIPAM) endows granular hydrogel with high retention to water-soluble ICG, preventing easy diffusion and rapid scavenging of ICG. The ICG-locking granular hydrogel can be spread and adhered onto the surgery site at wet state in vivo, exerting a persistent and stable PTT effect. Combined with αPD-L1 treatment, ICG-locking granular hydrogel-mediated PTT can eradicate postsurgery residual and metastatic tumors, and prevent long-term tumor recurrence. Further mechanistic studies indicate that combination treatment effectively promotes dendritic cells maturation in lymph nodes, enhances the number and infiltration of CD8+ T and CD4+ T cells in tumor tissue, and improves memory T cell number in spleen, thus activating the antitumor immune response. Overall, ICG-locking gel-mediated PTT is expected to exhibit broad clinical applications in postoperative treatment of cancers, like CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call