Abstract

To ensure the integrity of our genetic code, a coordinated network of signalling and repair proteins, known as the DNA damage response (DDR), detects and repairs DNA insults, the most toxic being double-strand breaks (DSBs). Tudor interacting repair regulator (TIRR) is a key factor in DSB repair, acting through its interaction with p53 binding protein 1 (53BP1). TIRR is also an RNA binding protein, yet its role in RNA regulation during the DDR remains elusive. Here, we show that TIRR selectively binds to a subset of messenger RNAs (mRNAs) in response to DNA damage. Upon DNA damage, TIRR interacts with the nuclear export protein Exportin-1 through a nuclear export signal. Furthermore, TIRR plays a crucial role in the modulation of RNA processing bodies (PBs). TIRR itself and TIRR-bound RNA co-localize with PBs, and TIRR depletion results in nuclear RNA retention and impaired PB formation. We also suggest a potential link between TIRR-regulated RNA export and efficient DDR. This work reveals intricate involvement of TIRR in orchestrating mRNA nuclear export and storage within PBs, emphasizing its significance in the regulation of RNA-mediated DDR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.