Abstract

The majority of CRISPR-Cas9 methods for mutations correction are oriented on gene editing through homologous recombination that is normally restrained by non-homologous end joining (NHEJ). A recently identified protein TIRR can bind a 53BP1 protein, a key effector of NHEJ, and inhibit its recruitment to double-strand break loci. Several studies elucidated the molecular mechanisms of TIRR-53BP1 binding and established bidirectional role of TIRR in 53BP1 functions and stability. It was proved that overexpression of TIRR promotes the double-strand break repair through homologous recombination. All findings, which were described in the review, allow assuming TIRR as a suitable target for enhancing efficacy of genome editing through homology directed repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.