Abstract

PurposeTo compare the effectiveness of TiRobot-assisted kyphoplasty with that of the traditional fluoroscopy-assisted approach in treating multilevel osteoporotic vertebral compression fractures.MethodsIn this retrospective study, we collected data from 71 patients (TiRobot-assisted group, n = 39; fluoroscopy-assisted group, n = 32) with multilevel osteoporotic vertebral compression fracture treated with unilateral traditional TiRobot-assisted or fluoroscopy-assisted percutaneous kyphoplasty. The operative time, infusion volume, length of stay (LOS), hospital expenses, visual analog scale (VAS), Oswestry Disability Index (ODI), radiation exposure, puncture deviation, anterior height of diseased vertebrae, local kyphotic angle, bone cement distribution, and bone cement leakage were compared between the TiRobot- and fluoroscopy-assisted groups.ResultsOf the 257 treated vertebrae, the average amount of bone cement injected in the TiRobot-assisted (142 vertebrae) and fluoroscopy-assisted (115 vertebrae) groups was 4.6 mL and 4.5 mL, respectively. The VAS score was significantly lower in the TiRobot-assisted group at 24 hours post-operatively (p = 0.006). The X-ray frequency was 34.7 times in the TiRobot-assisted group and 51.7 times in the fluoroscopy-assisted group (p < 0.001). In addition to the operative time, cumulative radiation dose for the surgeon and patient was significantly lower in the TiRobot-assisted group. The hospital expenses of the TiRobot-assisted group were significantly higher (p < 0.001). The puncture deviation and bone cement distribution were better in the TiRobot-assisted group (p < 0.001). Bone cement leakage was found in 18 and 29 cases in the TiRobot- and fluoroscopy-assisted groups, respectively (p = 0.010). One patient in the fluoroscopy-assisted group experienced radiculopathy due to a misplaced puncture but recovered in three months. No radiculopathy was observed in the TiRobot-assisted group.ConclusionsTiRobot-assisted percutaneous multilevel kyphoplasty is more accurate and has smaller radiometry, a more uniform bone cement distribution, and lower bone cement leakage. This method was therefore accurate and safe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.