Abstract

With the development of neural networks, object detection based on deep learning is developing rapidly, and its applications are gradually increasing. In the tire industry, detecting speckle interference bubble defects of tire crown has difficulties such as low image contrast, small object scale, and large internal differences of defects, which affect the detection precision. To solve these problems, we propose a new feature pyramid network based on Faster RCNN-FPN. It can fuse features across levels and directions to improve small object detection and localization, and increase object detection precision. The method has proven its effectiveness through cross-validation experiments. On a tire crown bubble defect dataset, the mAP [0.5:0.95] increased by 2.08% and the AP0.5 increased by 2.4% over the original network. The results show that the improved network significantly improves detecting tire crown bubble defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.