Abstract

Many tire-road friction coefficient estimation methods require the wheel angular speed sensor to provide a signal. In this paper, a tire-road friction coefficient estimation algorithm for distributed drive electric vehicles using permanent magnet synchronous motors(PMSM) sensorless control is proposed to reduce the use of wheel angular speed sensors. The wheel angular speed signal is replaced by the rotor speed signal obtained from PMSM sensorless control. First, the three degrees of freedom vehicle dynamics model and the PMSM mathematical model are established, and a strong tracking cubature Kalman filtering algorithm based on orthogonal transformation (T-STCKF) is derived to overcome the problem that the STCKF algorithm is prone to nonlocal sampling when dealing with high dimensional systems. Second, a PMSM sensorless control system based on the adaptive exponent reaching law of sliding mode control and the T-STCKF algorithm is established, and confirmed its validity. Finally, the feasibility of the proposed algorithm is demonstrated through multicase simulation and experiment and the results shows that the T-STCKF algorithm is more accurate than the STCKF algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call