Abstract

In this paper, the measurements of individual wheel speeds and the absolute position from a global positioning system are used for high-precision estimation of vehicle tire radii. The radii deviation from its nominal value is modeled as a Gaussian random variable and included as noise components in a simple vehicle motion model. The novelty lies in a Bayesian approach to estimate online both the state vector and the parameters representing the process noise statistics using a marginalized particle filter (MPF). Field tests show that the absolute radius can be estimated with submillimeter accuracy. The approach is tested in accordance with regulation 64 of the United Nations Economic Commission for Europe on a large data set (22 tests, using two vehicles and 12 different tire sets), where tire deflations are successfully detected, with high robustness, i.e., no false alarms. The proposed MPF approach outperforms common Kalman-filter-based methods used for joint state and parameter estimation when compared with respect to accuracy and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.