Abstract
The concept of intelligent tires has drawn attention of researchers in the areas of autonomous driving, advanced vehicle control, and artificial intelligence. The focus of this paper is on intelligent tires and the application of machine learning techniques to tire force estimation. We present an intelligent tire system with a tri-axial acceleration sensor, which is installed onto the inner liner of the tire, and Neural Network techniques for real-time processing of the sensor data. The accelerometer is capable of measuring the acceleration in x,y, and z directions. When the accelerometer enters the tire contact patch, it starts generating signals until it fully leaves it. Simultaneously, by using MTS Flat-Trac test platform, tire actual forces are measured. Signals generated by the accelerometer and MTS Flat-Trac testing system are used for training three different machine learning techniques with the purpose of online prediction of tire forces. It is shown that the developed intelligent tire in conjunction with machine learning is effective in accurate prediction of tire forces under different driving conditions. The results presented in this work will open a new avenue of research in the area of intelligent tires, vehicle systems, and tire force estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.