Abstract

Tire defect detection has significant industrial value and has been a research topic in both academia and industry. Despite its importance, prior works does not considered the practical manufacturing circumstances, where there are only limited annotation for the defect. Such limitation hinders the prior works from deploying to the real-world system. To address the problem of Tire Defect Detection with Limited Annotation (TTDLA), we proposed a novel framework, denoted as tire defect detection with Self-Supervision and Synthetic data (or S3). S3 first uses self-supervised learning to train the encoder without using any labeled data in the pretraining stage. The encoder is then adopted as the encoder of the Faster-RCNN detector in the fine-tuning stage. In addition, we proposed an algorithm to generate synthesized image by pasting defects randomly onto the regular image. Experiments demonstrate that both self-supervised learning and synthesized data boost the performance of the detector under TTDLA scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.