Abstract

A challenging and outstanding problem in interdisciplinary research is to understand the interplay between transients and stochasticity in high-dimensional dynamical systems. Focusing on the tipping-point dynamics in complex mutualistic networks in ecology constructed from empirical data, we investigate the phenomena of noise-induced collapse and noise-induced recovery. Two types of noise are studied: environmental (Gaussian white) noise and state-dependent demographic noise. The dynamical mechanism responsible for both phenomena is a transition from one stable steady state to another driven by stochastic forcing, mediated by an unstable steady state. Exploiting a generic and effective two-dimensional reduced model for real-world mutualistic networks, we find that the average transient lifetime scales algebraically with the noise amplitude, for both environmental and demographic noise. We develop a physical understanding of the scaling laws through an analysis of the mean first passage time from one steady state to another. The phenomena of noise-induced collapse and recovery and the associated scaling laws have implications for managing high-dimensional ecological systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.