Abstract

The strong regenerative ability of the liver safeguards the crucial hepatic functions. The balance between hepatocyte proliferation and death is critical for restoring liver size and physiology. Tumour necrosis factor (TNF) alpha-induced protein 8-like 1 (TIPE1) is highly expressed in liver and has been identified as a candidate regulator for cell proliferation and death, being involved in a variety of biological processes and diseases. However, the role of TIPE1 in liver regeneration remains unexplored. In the present study, we found that TIPE1 expression was elevated in the regenerating liver induced by either partial hepatectomy or 10% carbon tetrachloride administration. Mice with hepatocyte conditional Tipe1 knockout presented significantly impaired liver regeneration. Mechanistically, hepatic Tipe1 deficiency decreased the level of reactive oxygen species in hepatocytes, which in turn led to the inhibition of Forkhead box O1 acetylation and microtubule-associated protein 1 light chain 3 I to microtubule-associated protein 1 light chain 3 II conversion, and the accumulation of sequestosome 1. By contrast, forced expression of TIPE1 in hepatocyte significantly promoted liver regeneration following 70% partial hepatectomy and enhanced hepatocyte reactive oxygen species/acetylated-Forkhead box O1 level and autophagy. These findings indicate that TIPE1 plays a crucial role in liver regeneration by finely regulating the oxidative stress and autophagy and is a potential target for medical intervention of liver regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.