Abstract
Purpose – The purpose of this paper is to analyze the stability behavior of the omnidirectional mobile robot with active dual-wheel caster (ADWC) assemblies and provide a stable trajectory without any tip-over incident. The omnidirectional mobile robot to be developed is for transporting cuboid-shaped objects. Design/methodology/approach – The omnidirectional transport mobile robot is designed using an ADWC assemblies structure, the tip-over occurrence is estimated based on the support forces of an active footprint, the tip-over direction is predicted, the tip-over stability is enhanced to prevent the tip-over occurrence and a fast traveling motion is provided. Findings – The omnidirectional mobile robot tends to tip-over more on the sides with small ranges of tip-over angle. The proposed method for estimating the tip-over occurrence and enhancing the stability using the gyroscopic torque device was feasible as the tip-over prevention system of the omnidirectional mobile robot with ADWC assemblies. Originality/value – The research addresses the study of the tip-over stability for the omnidirectional mobile robot that possesses an active footprint. It also addresses the prediction of the tip-over occurrence using the derived dynamical model together with force-angle stability measure and the tip-over stability enhancement method using a single-gimbal control moment gyro device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Unmanned Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.