Abstract

Tip cleaning and sharpening processes for noncontact atomic force microscope (AFM) operated in ultrahigh vacuum (UHV) were carried out and evaluated by a scanning Auger microscope (SAM) with a field emission electron gun and a noncontact AFM in UHV combined with a scanning tunneling microscope and a field emission microscope. The cantilever used in this study was piezoresistive, which can be heated by passing a current through the resistive legs of the cantilever. As a pretreatment, the tip was irradiated with ultraviolet light in oxygen to remove carbon contaminants. It was heated at about 750°C to form a clean oxide layer in oxygen of 5×10 −5 Torr in an SAM chamber. The desorption of the layer can make a remained tip apex sharper by heating under electron beam irradiation. A thermally oxidized layer was also eliminated by HF etching to sharpen the tip apex. The procedures are useful to obtain a well-defined Si tip suitable for a noncontact AFM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call