Abstract

The electron transport layer (ETL) plays an important role on the performance and stability of perovskite solar cells (PSCs). Developing double ETL is a promising strategy to take the advantages of different ETL materials and avoid their drawbacks. Here, an ultrathin SnO2 layer of ∼ 5 nm deposited by atomic layer deposit (ALD) was used to construct a TiO2/SnO2 double ETL, improving the power conversion efficiency (PCE) from 18.02% to 21.13%. The ultrathin SnO2 layer enhances the electrical conductivity of the double layer ETLs and improves band alignment at the ETL/perovskite interface, promoting charge extraction and transfer. The ultrathin SnO2 layer also passivates the ETL/perovskite interface, suppressing nonradiative recombination. The double ETL achieves outstanding stability compared with PSCs with TiO2 only ETL. The PSCs with double ETL retains 85% of its initial PCE after 900 hours illumination. Our work demonstrates the prospects of using ultrathin metal oxide to construct double ETL for high-performance PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call