Abstract

Pickering emulsions stabilized by salicylic acid and arginine modified titanium dioxide (TiO2–SA–Arg) nanoparticles were prepared in this study for photocatalytic degradation of nitrobenzene in a rotating annular reactor, and the effects of various design parameters of the rotating annular reactor, initial nitrobenzene concentration, catalyst amount, and solution pH on the degradation rate of nitrobenzene were investigated. Meanwhile, the degradation mechanism of nitrobenzene was proposed. The results show that increasing the aeration rate, the rotational speed, and light intensity results in a higher photocatalytic degradation rate of nitrobenzene owing to the effective clearance of electrons and a high quantity of oxidative free radicals. The degradation of nitrobenzene in the rotating annular reactor follows the pseudo first-order kinetics, but it is not well described by the Langmuir–Hinshelwood equation. Aeration has a significant effect on the photocatalytic degradation pathway of nitrobenzene. Because nitrobenzene can undergo reduction reaction as electron acceptors and oxidative degradation initiated by hydroxyl free radicals, the photocatalytic degradation of nitrobenzene follows the reduction mechanism under no aeration, but the oxidation mechanism under aeration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.