Abstract

TiO(2)@carbon core/shell nanofibers (TiO(2)@C NFs) with different thinkness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform graphite carbon layer was formed around the electrospun TiO(2) nanofiber via C-O-Ti bonds. By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer could be easily controlled. Furthermore, the TiO(2)@C NFs had remarkable light absorption in the visible region. The photocatalytic studies revealed that the TiO(2)@C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TiO(2) nanofibers under visible light irradiation, which might be attributed to high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon as a sensitizer and TiO(2) with one dimension structure. Notably, the TiO(2)@C NFs could be easily recycled due to their one-dimensional nanostructural property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call