Abstract

We investigate titanium nitride (TiN) thin film coatings on silicon for CMOS-compatible sub-bandgap charge separation upon incident illumination, which is a key feature in the vast field of on-chip photodetection and related integrated photonic devices. Titanium nitride of tunable oxidation distributions serves as an adjustable broadband light absorber with high mechanical robustness and strong chemical resistivity. Backside-illuminated TiN on p-type Si (pSi) constitutes a self-powered and refractory alternative for photodetection, providing a photoresponsivity of about ∼1 mA/W at 1250 nm and zero bias while outperforming conventional metal coatings such as gold (Au). Our study discloses that the enhanced photoresponse of TiN/pSi in the near-infrared spectral range is directly linked to trap states in an ultrathin TiO2–x interfacial interlayer that forms between TiN and Si. We show that a pSi substrate in conjunction with a few nanometer thick amorphous TiO2–x film can serve as a platform for photocurrent...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call