Abstract

Semiconductors have been modulated in thickness to optimize their surface-enhanced Raman scattering (SERS) activity in noble metal/semiconductor SERS substrates. However, the charge transfer (CT) resonance mechanism caused by the change of the semiconductor thickness has not been fully clarified yet, due to the influence of the strong surface plasmon resonance (SPR) effect from the noble metals. Here, systems of p-aminothiophenol (PATP) molecules chemisorbed on TiO2/Ni nanopillar array films with precisely controlled TiO2 thicknesses (PATP/TiO2/Ni) were developed to systematically evaluate the TiO2 thickness-dependent CT mechanism on the premise of minimizing the SPR influence. Ultraviolet–visible, photoluminescence and X-ray photoelectron spectroscopy results demonstrated that four parts that ascribed to the SERS enhancement, photo-induced CT from Ni to TiO2, resonance excitation of TiO2, CT from TiO2 surface states to PATP molecules, and the molecular resonance of PATP molecules, are highly TiO2-thickness dependent. Hence the whole system exhibits a strong TiO2-thickness-dependent CT effect (at the two interfaces of Ni-TiO2 and TiO2-PATP) and SERS activity with a maximum SERS intensity at a TiO2 thickness of 40 nm. This work shall be valuable for future developing an optimal metal/semiconductor SERS substrates and obtaining an in-depth understanding of the semiconductor-thickness-dependent charge transfer mechanism for SERS applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.