Abstract

Nanoparticle stability against coarsening is one of the keys to allow better exploitation of the properties of nanoscale materials. The intrinsically high interfacial energies of nanoparticles constitute the driving force for coarsening, and therefore can serve as targets to design materials with improved thermal stability. In this study, we discuss the surface engineering of TiO2 nanocatalysts for artificial photosynthesis by exploiting the spontaneous segregation of Ba2+ ions to the interfaces of TiO2 nanocrystals. Ba2+ is a strong candidate for photoelectrocatalytic reduction of CO2 and its effects on interfacial energies lead to a remarkable increase in thermal stability. By using a systematic lixiviation method, we quantified the Ba2+ content located at both the surface and at grain boundary interfaces and combined with direct calorimetric measurements of surface energies and microstructural studies to demonstrate that Ba2+ excess quantities directly impact coarsening of TiO2 nanocatalysts by creatin...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call