Abstract

The photocatalytic removal of water contaminants for ecological systems has become essential in the past few decades. Consequently, for commercialization, cost-efficient, earth-abundant and easy to synthesize photocatalysts for dye degradation are of urgent need. We have demonstrated a simple and feasible approach for fabricating TiO2–SnO2 nanocomposite photocatalysts via urea-assisted-thermal-decomposition with different mass ratios. The as-synthesized materials were characterized by different physicochemical techniques. The phase formation and crystallite size were calculated by using XRD. The STEM, UV-Vis, DRS, HR-TEM and EDS revealed the effective formation of the heterojunction between TiO2 and SnO2, and enrichment in the UV-absorption spectrum. All synthesized materials were used for the photocatalytic degradation of methyl orange (MO) under UV light. The optimized results of the TiO2–SnO2 nanocomposite showed excellent photostability and photocatalytic activity over a number of degradation-reaction cycles of methyl-orange (MO) dye under the illumination of ultraviolet light. In addition, the recent method has great potential to be applied as a proficient method for mixed-metal-oxide-nanocomposite synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call