Abstract
ABSTRACT Nanoparticle-based methods can compensate for yield and quality loss of crops affected by drought. The current study, performed in a factorial experiment based on a completely randomized design, addressed to evaluate the effect of titanium dioxide nanoparticles (TiO2 NPs) at 0, 10, 20, and 30 mg L−1 under three irrigation regimes (full irrigation, partial root drying (PRD), and sustained deficit irrigation (SDI)) on Fragaria × ananassa cv. Camarosa. Results revealed that the PRD stress had more adverse effects on F. ananassa cv. Camarosa than SDI stress. Assessment of the behavior of TiO2 NPs in this study elucidated that mean productivity, yield stability index, and fruit number in plants grown under full irrigation increased when treated with 10 mg L−1 TiO2 NPs. Under the deficit irrigation, including PRD and SDI, all levels of TiO2 NPs mitigated mean productivity and yield stability index by ameliorating the fruit number and water use efficiency (WUE) and decreasing transpiration. Flowering and fruit set times were reduced by TiO2 NPs and deficit irrigation while their periods were enhanced by ones. It seems that when the strawberry was exposed to TiO2 NPs exhibited approximately drought tolerance. These nanoparticles ameliorated photosynthesis and mineral uptake and allocated dry matter to the root. These alterations can contribute to crop production in deficit irrigation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.