Abstract

Numerous nanomaterials have been utilized for novel biosensors with sensitivity and selectivity in the last decades due to their intrinsic unique properties. Herein, a facile fluorescence method for nucleic acid detection was developed by employing TiO2 nanowires (NWs) as the sensing platform. The quenching effect of TiO2 NWs to fluorophore-labelled single-stranded DNA (ssDNA) was found to be more significant than that to fluorophore-labelled double-stranded DNA (dsDNA) or triplex DNA probes. More importantly, the whole quenching process was also fast since it just took about ten minutes to reach the equilibrium. Based on the different affinities of TiO2 NWs to ssDNA, dsDNA and triplex DNA probes, the sequence-specific nucleic acids were detected with sensitivity and specificity. Further investigation has demonstrated that the quenching efficiency of TiO2 NWs to long ssDNA was apparently superior than that to short ssDNA. Moreover, the fluorescence from various ssDNA probes labelled with a wide spectrum of fluorescent dyes could also be quenched by TiO2 NWs. These inspiring results reveal that TiO2 NWs could be an excellent universal nanoquencher used in the next-generation biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.