Abstract

Recent findings found that TiO2 nanoparticles (TiO2-NPs) have male reproductive toxicity. However, few reports have studied the toxicity of TiO2-NPs in crustaceans. In this study, we first chose the freshwater crustacean Eriocheir sinensis (E. sinensis) to explore the male toxicity of TiO2-NP exposure and the underlying mechanisms. Three nm and 25 nm TiO2-NPs at a dose of 30 mg/kg bw induced apoptosis and damaged the integrity of the haemolymph-testis-barrier (HTB, a structure similar to the blood-testis-barrier) and the structure of the seminiferous tubule. The 3-nm TiO2-NPs caused more severe spermatogenesis dysfunction than the 25-nm TiO2-NPs. We initially confirmed that TiO2-NP exposure affected the expression patterns of adherens junctions (α-catenin and β-catenin) and induced tubulin disorganization in the testis of E. sinensis. TiO2-NP exposure caused reactive oxygen species (ROS) generation and an imbalance of mTORC1-mTORC2 (mTORC1/rps6/Akt levels were increased, while mTORC2 activity was not changed). After using the ROS scavenger NAC to inhibit ROS generation, both the mTORC1-mTORC2 imbalance and alterations in AJs were rescued. More importantly, the mTORC1 inhibitor rapamycin abolished mTORC1/rps6/Akt hyperactivation and partially restored the alterations in AJs and tubulin. Collectively, the mTORC1-mTORC2 imbalance induced by TiO2-NPs was involved in the mechanism of AJ and HTB disruption, resulting in spermatogenesis in E. sinensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call