Abstract

The influence of nanomaterials on dynamic isothermal amplification and their morphology regulated by bionic biological reactions in vitro remain unknown. From a theoretical perspective, TiO2 nanoparticles enhance the amplification efficiency and reaction specificity of recombinase polymerase amplification (RPA). These nanoparticles aggregated into larger nanoclusters by adsorbing RPA components, termed nanoscale RPA factories, which increased their local concentrations to enhance RPA. Following the nick/extension cycles mediated by a bifunctional linker located at the 5' end of the forward primers, the TiO2 nanoparticle-enhanced LRSDA process produces single-stranded products, constituting the G-quadruplex DNAzymes and catalyzing the chromogenic substrate to facilitate colorimetric analysis for on-site bioassays. Salmonella spp. and genetically modified maize MON810 could be detected with a detection limit of 4 cfu/mL and 0.1% transgenic components, respectively. Briefly, TiO2-assisted isothermal molecular amplification addressed the demands of practical on-site applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.