Abstract

We demonstrated a highly efficient conducting indium tin oxide (ITO) core-TiO2 nanocrystals shell nanowire array for a photoelectrode in dye-sensitized solar cells with regard to light harvest and charge collection. The TiO2 shell layer, consisting of anatase nanocrystals of ~2 nm, were successfully formed on a single crystalline ITO nanowire prepared via a vapor transport method using repetitive TiCl4 aqueous solution treatments at 50 °C. We found that the nanocrystal size and number of Cl(-) ions remaining on the formed shell layer critically influence the dye loading properties. Moreover, these factors can be controlled by means of a post-annealing process. We also found that the dye loading and the back electron transport from the conductive ITO nanowire to the electrolyte mainly determine the final cell performance. The proposed double-shell layer structure consisting of dense and porous layers showed significantly improved cell performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call