Abstract
AbstractSulfonated polyphenylene sulphide sulfone (sPPSS) loaded with titania‐graphene (TiO2‐GNS) was synthesized by the polycondensation method and studied their suitability towards proton exchange membrane fuel cell applications. The structural, morphological, and physic‐chemical properties of sPPSS nanocomposites containing varying amounts of (1%, 2%, 3%, and 5%) TiO2‐GNS was investigated by Fourier transform infrared, H1‐NMR, P‐XRD, FE‐SEM, HR‐TEM, Raman spectrum, swelling ratio (SR), water uptake, thermal analysis, oxidative stability (OS) and proton conductivity. Further, the obtained TiO2‐GNS dispersed polymer membrane exhibits greatly reduced water absorption 4.44% and a less volume SR (15.6%). The 5 wt% TiO2‐GNS dispersed sPPSS nanocomposites exhibited a PC value around 2.03 × 10−2 S/cm at 110°C. The sPPSS nanocomposites membrane confirmed admirable OS with a maximum degradation of 39.15% during immersed in the Fenton reagent for 6 h at 80°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.