Abstract

In this work, we present the results of physical and electrical characterization of Ti-based high-k gate dielectrics on Ge substrates. Titanium tetrakis iso- propoxide (TTIP) was used as the organometallic source for the deposition of ultra-thin TiO2 films on p-Ge (1 0 0) at low temperature (<200 °C) by plasma enhanced chemical vapor deposition (PECVD) technique in a microwave (700 W, 2.45 GHz) plasma cavity discharge system at a pressure of ∼65 Pa. The presence of an ultra-thin lossy GeO2 interfacial layer between the deposited high-k film and the substrate, results in frequency-dependent capacitance–voltage (C–V) characteristics in strong accumulation and a high interface state density (∼1013 cm−2 eV−1). To improve the electrical properties, nitrogen engineering has been employed to convert the lossy GeO2 interfacial layer to its oxynitride, thus forming TiO2/GeOxNy/Ge stacked-gate structure with improved interface/electrical properties. Different N sources, such as NO, NH3 and NO/NH3, have been used for nitrogen engineering. XPS and Raman spectroscopy analyses have been used for surface morphological study. Electrical properties, such as gate leakage current density, interface state density, charge trapping, flatband voltage shift, etc, have been studied in detail for TiO2/GeOxNy/Ge MIS capacitors using the current–voltage (I–V), capacitance–voltage (C–V), conductance–voltage (G–V) and stress (both constant voltage and current) measurements. Although a significant improvement in electrical characteristics has been observed after nitridation in general, the formation of the interfacial GeOxNy layer, obtained from NO-plasma nitridation, is found to provide the maximum improvement among all the nitridation techniques used in this study. It is shown that the insertion of an ultra-thin oxynitride (GeOxNy) interfacial layer is advantageous for producing gate-quality TiO2 high-k dielectric stacks on Ge substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.