Abstract

Gas sensors play an irreplaceable role in industry and life. Different types of gas sensors, including metal-oxide sensors, are developed for different scenarios. Titanium dioxide is widely used in dyes, photocatalysis, and other fields by virtue of its nontoxic and nonhazardous properties, and excellent performance. Additionally, researchers are continuously exploring applications in other fields, such as gas sensors and batteries. The preparation methods include deposition, magnetron sputtering, and electrostatic spinning. As researchers continue to study sensors with the help of modern computers, microcosm simulations have been implemented, opening up new possibilities for research. The combination of simulation and calculation will help us to better grasp the reaction mechanisms, improve the design of gas sensor materials, and better respond to different gas environments. In this paper, the experimental and computational aspects of are reviewed, and the future research directions are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.