Abstract

Upgrading of biomass wastes to value-added materials has been incessantly pursued worldwide with diverse applications, especially deploying photocatalytic composites encompassing metal oxides with acidic and carbon compounds. Herein, the fabrication of a morphologically unique acidic catalyst encompassing a two-dimensional (2D) TiO2/g-C3N4 heterojunction feature is described for the generation of 5-hydroxymethylfurfural (5-HMF), which exploits the acidic/ionic liquid (IL) bifunctional photocatalysis under visible light. The structural integrity of the synthesized TiO2/g-C3N4/SO3H(IL) was corroborated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy-energy-dispersive spectroscopy (EDX-EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), UV-vis, Tauc plots, transmission electron microscopy (TEM), and Brunauer-Emmett-Teller-Barrett-Joyner-Halenda (BET-BJH) analyses. Keeping environmental impact in mind, there are compelling advantages in the development of bio-derived pathways to access ILs from natural renewable resources. The outcomes of environmental assessments have revealed that the incorporation of TiO2 in g-C3N4 and ClSO3H can reduce the probability of recombination due to ionic charges present, therefore enhancing the photocatalytic activity via the transformation of cellulose and glucose to produce 5-HMF in higher yields, with the optimum conditions being reaction in water under a blue light-emitting diode (LED), at 100 °C, for 1-1.5 h. The main advantages of this production method include minimum number of synthetic steps as well as ample availability of and easy access to primary ingredients. While a significant volume of 5-HMF was produced under blue light-emitting diode (LED) radiation, the selectivity was drastically reduced in the dark. The salient attributes of the catalyst comprise stability in air, robustness, reusability, and its overall superior activity that is devoid of hazardous additives or agents. This inimitable method has uncovered a newer strategy for enhancing the photocatalytic attributes of deployed semiconducting materials for numerous photocatalytic functions while adhering to the tenets of environmental friendliness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call