Abstract

A density functional theory (DFT) method (periodic DMol3) with full geometry optimization was used to study the adsorption of nitrogen-containing heterocycles such as pyrazole, imidazole, 1,2,4-triazole, pyridine, pyrimidine, pyrazine, and 4-t-butylpyridine (TBP) on TiO2 anatase (101), (100), and (001) surfaces. All structures displayed a negative shift in the TiO2 Fermi level upon adsorption of N-containing heterocycles. Additionally, the heterocycles were examined as an additive in an I-/I3- redox electrolyte solution of dye-sensitized TiO2 solar cell. The DFT results indicated that the negative shift of TiO2 Fermi level was due to the adsorbate dipole moment component normal to the TiO2 surface plane, and corresponded to the enhanced open-circuit photovoltage (Voc) and the reduced short-circuit photocurrent density (Jsc) in a dye-sensitized solar cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call