Abstract
The photodegradation (λ=365 nm) of the biomolecule vitamin B12, catalyzed by the photocatalyst TiO2 nanoparticles (NPs), has been investigated in aqueous suspension. The photodegradation process of vitamin B12 has been monitored by means of electronic absorption (Abs), Fourier-transform infrared (FT-IR), and resonance Raman (RR) spectroscopies, respectively. The results show that only under UV illumination in the presence of TiO2 is there effective degradation, and the photocatalytic degradation of vitamin B12 is strongly influenced by the amount of TiO2 NPs, the pH, and the initial concentration of vitamin B12. The photocatalytic reaction kinetics of vitamin B12 conforms to a Langmuir-Hinshelwood isotherm model. Changes involving the three structural units of the carbon-metal bond C–Co, the organic corrin macrocycle combined with the benzimidazole nucleotide, and the inorganic CN in the vitamin B12 molecule during the photocatalytic degradation are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.