Abstract
Bismuth vanadate (BiVO4) is a promising photoanode material owing to the narrow bandgap, appropriate band position, and excellent resistance against photocorrosion, however, the performance of photoelectrochemical (PEC) water splitting is largely limited by the poor carrier separation and transport ability. To address these issues, for the first time, we fabricate BiVO4 film/CuO nanocone p-n junctions as photoanodes by combing a facile spin-coating process and water bath reaction. This structure strengthens the light harvesting and promotes the charge separation and transport ability. The surface defects states are passivated by coating conformally ultrathin TiO2 onto CuO surface through atomic layer deposition (ALD) technique. Benefiting from the favorable morphology, energy band, and surface treatment, the BiVO4/CuO/TiO2 heterojunction generates an improved photocurrent that is much higher than pure BiVO4. The detailed mechanism investigations indicate that the synergetic optimization of charge separation and injection efficiency in the bulk and surface of photoelectrodes can significantly improve the performance of PEC cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.