Abstract

This paper investigates the suitability of the AnyDSL partial evaluation framework to implement tinyMD: an efficient, scalable, and portable simulation of pairwise interactions among particles. We compare tinyMD with the miniMD proxy application that scales very well on parallel supercomputers. We discuss the differences between both implementations and contrast miniMD’s performance for single-node CPU and GPU targets, as well as its scalability on SuperMUC-NG and Piz Daint supercomputers. Additionally, we demonstrate tinyMD’s flexibility by coupling it with the waLBerla multi-physics framework. This allow us to execute tinyMD simulations using the load-balancing mechanism implemented in waLBerla.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.