Abstract

Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and δ13C and δ15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be considered in coastal management especially with respect to their importance as a nutrient source for other ecosystems and organisms.

Highlights

  • The tropical coastal zone is composed of ecosystems emerging from the open ocean, extending over coral reefs and seagrass beds towards the tidal zone, which may include mangrove forests

  • Despite the high local primary production in mangrove and seagrass stands, we found that oceanic sources dominated trap and suspended particulate matter (SPM) samples along the entire transect

  • We found a correlation between the width of the mangrove forest and their contribution, which provides new insights into physical processes associated with mangrove outwelling

Read more

Summary

Introduction

The tropical coastal zone is composed of ecosystems emerging from the open ocean, extending over coral reefs and seagrass beds towards the tidal zone, which may include mangrove forests This zone forms a well-structured and gradual interface between the land and the sea that contains some of the most productive and biogeochemically active ecosystems in the world [1]. Part of this productivity is maintained by particulate and dissolved organic matter (POM and DOM) inputs from both terrestrial and oceanic sources [2]. The recognized mangrove outwelling hypothesis [7,8] postulates that export of mangrove-derive OM supports adjacent ecosystems and food webs

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call