Abstract
Billions of distributed, heterogeneous, and resource constrained IoT devices deploy on-device machine learning (ML) for private, fast, and offline inference on personal data. On-device ML is highly context dependent and sensitive to user, usage, hardware, and environment attributes. This sensitivity and the propensity toward bias in ML makes it important to study bias in on-device settings. Our study is one of the first investigations of bias in this emerging domain and lays important foundations for building fairer on-device ML. We apply a software engineering lens, investigating the propagation of bias through design choices in on-device ML workflows. We first identify reliability bias as a source of unfairness and propose a measure to quantify it. We then conduct empirical experiments for a keyword spotting task to show how complex and interacting technical design choices amplify and propagate reliability bias . Our results validate that design choices made during model training, like the sample rate and input feature type, and choices made to optimize models, like light-weight architectures, the pruning learning rate, and pruning sparsity, can result in disparate predictive performance across male and female groups. Based on our findings, we suggest low effort strategies for engineers to mitigate bias in on-device ML.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Software Engineering and Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.