Abstract

By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (~1.45 eV) and a high hole mobility (of order 10000 cm2V−1S−1), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Young’s modulus (20–40 GPa) and an ultralow lattice thermal conductivity (<3 Wm−1K−1 at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poisson’s ratio of −0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.