Abstract

Tingley's problem asks whether every surjective isometry between the unit spheres of two Banach spaces admits an extension to a real linear surjective isometry between the whole spaces. In this paper, we give an affirmative answer to Tingley's problem when both spaces are preduals of von Neumann algebras, the spaces of self-adjoint operators in von Neumann algebras or the spaces of self-adjoint normal functionals on von Neumann algebras. We also show that every surjective isometry between the unit spheres of unital C⁎-algebras restricts to a bijection between their unitary groups. In addition, we show that every surjective isometry between the normal state spaces or the normal quasi-state spaces of two von Neumann algebras extends to a linear surjective isometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.