Abstract

Because of concerns regarding shortages of lithium resources and the urgent need to develop low-cost and high-efficiency energy-storage systems, research and applications of sodium-ion batteries (SIBs) have re-emerged in recent years. Herein, recent advances in high-capacity Sn-based anode materials for stable SIBs are highlighted, including tin (Sn) alloys, Sn oxides, Sn sulfides, Sn selenides, Sn phosphides, and their composites. The reaction mechanisms between Sn-based materials and sodium are clarified. Multiphase and multiscale structural optimizations of Sn-based materials to achieve good sodium-storage performance are emphasized. Full-cell designs using Sn-based materials as anodes and further development of Sn-based materials are discussed from a commercialization perspective. Insights into the preparation of future high-performance Sn-based anode materials and the construction of sodium-ion full batteries with a high energy density and long service life are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.