Abstract

The shelterin complex consisting of TRF1, TRF2, RAP1, TIN2, TPP1, and POT1, functions to prevent false recognition of telomeres as double-strand DNA breaks, and to regulate telomerase and DNA repair protein access. TIN2 is a core component linking double-stranded telomeric DNA binding proteins (TRF1 and TRF2) and proteins at the 3’ overhang (TPP1-POT1). Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, determining TIN2's unique mechanistic function has been elusive. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 using complementary single-molecule imaging platforms, including atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that TIN2S and TIN2L isoforms facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (6 TTAGGG repeats), the majority of TRF1 mediated telomeric DNA-DNA bridging events are transient with a lifetime of ∼1.95 s. On longer DNA substrates (270 TTAGGG), TIN2 forms multi-protein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last for at least minutes. Pre-incubation of TRF1 with its regulator protein Tankyrase 1 significantly reduces TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protects the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Our study provides evidence that TIN2 functions to promote TRF1 mediated trans-interactions of telomeric DNA, leading to new mechanistic insight into sister telomere cohesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call